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Bit-Interleaved Coded Modulation in the

Wideband Regime

Alfonso Martinez, Albert Guillén i Fàbregas, Giuseppe Caire and Frans Willems

Abstract

The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian channels is studied.

The Taylor expansion of the coded modulation capacity for generic signal constellations at low signal-to-

noise ratio (SNR) is derived and used to determine the corresponding expansion for the BICM capacity.

Simple formulas for the minimum energy per bit and the wideband slope are given. BICM is found to

be suboptimal in the sense that its minimum energy per bit can be larger than the corresponding value

for coded modulation schemes. The minimum energy per bit using standard Gray mapping on M -PAM

or M2-QAM is given by a simple formula and shown to approach -0.34 dB as M increases. Using the

low SNR expansion, a general trade-off between power and bandwidth in the wideband regime is used

to show how a power loss can be traded off against a bandwidth gain.
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I. INTRODUCTION AND MOTIVATION

Bit-interleaved coded modulation (BICM) was originally proposed by Zehavi [1] and further

elaborated by Caire et al. [2] as a practical way of constructing efficient coded modulation

schemes over non-binary signal constellations. Reference [2] defined and computed the channel

capacity of BICM under a sub-optimal non-iterative decoder, and compared it to the coded

modulation capacity, assuming equiprobable signalling over the constellation. When natural

reflected Gray mapping was used, the BICM capacity was found to be near optimal at high

signal-to-noise ratio. Nevertheless, plots of the BICM capacity as a function of the energy per

bit for reliable communication (see Fig. 1) reveal the suboptimality of BICM with the non-

iterative decoder of [1], [2] for low rates, that is in the power-limited or wideband regime.

Recent work by Verdú [3] presents a detailed treatment of the wideband regime. He studied the

minimum bit energy-to-noise ratio Eb

N0 min
for reliable communication and the wideband slope, i.

e. the first-order expansion of the capacity for low Eb

N0 min
, under a variety of channel models and

channel state information (CSI) assumptions. These results are obtained by using a second-order

expansion of the channel capacity at zero signal-to-noise ratio (SNR). Furthermore, using these

results, he obtained a general tradeoff between data rate, power and bandwidth in the wideband

regime. In particular, Verdú[3] studied the bandwidth penalty incurred by using suboptimal

signal constellations in the low-power regime. An implicit assumption of this tradeoff was that

the power cannot change together with the bandwidth.

Motivated by the results of Figure 1 and by Verdú’s analysis [3], in this paper, we give an

analytical characterization of the behaviour of BICM in the low-power regime. Studying the

behaviour of BICM at low rates may prove useful in the design of multi-rate communication

systems where rate adaptation is carried out by modifying the binary code, while keeping the

modulation unchanged. In the process, we derive a number of results of independent interest for

coded modulation over the Gaussian channel. In particular, the first two coefficients of the Taylor

expansion of the coded modulation capacity for arbitrary signal constellations at zero SNR are

derived, and used to obtain the corresponding coefficients for BICM. We also obtain a closed
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Fig. 1. Channel capacity (in bits per channel use) as a function of Eb
N0

with memoryless binary labeling and BICM-ML decoding

for multiple signal constellations with uniform inputs in the AWGN channel. Gray and set partitioning labeling rules correspond

to thin dotted and dashed-dotted lines respectively. In thick solid lines, the capacity with Gaussian inputs; with thin solid lines

the CM channel capacity with uniform inputs (3).

form expression for the minimum Eb

N0
for BICM using QAM constellations with natural reflected

Gray mapping, and we show that for large constellations it approaches -0.34 dB, resulting in a

1.25 dB power loss with respect to coded modulation. Using these results, we derive the trade-

off between power and bandwidth in the wideband regime that generalizes the results of [3] to

capture the effects of changing both power and bandwidth.

This paper is organized as follows. Section II introduces the system model, basic assumptions

and notation. Section III defines the wideband regime, and presents the low-SNR expansion for

both coded modulation and BICM. Section IV introduces the general trade-off between power

and bandwidth. Concluding remarks appear in Section V. Proofs of various results are in the

Appendices.
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II. MODEL AND ASSUMPTIONS

We consider a complex-valued, discrete-time additive Gaussian noise channel with fading.

The k-th channel output yk is given by

yk = hk

√
SNR xk + zk, (1)

where xk is the k-th channel input, hk a fading coefficient, and zk an independent sample of

circularly symmetric complex-valued Gaussian noise of unit variance; SNR denotes the average

signal-to-noise ratio at the receiver. The transmitted, received, noise and fading samples, are

realizations of the random variables X, Y, Z and H . The fading coefficients hk are independently

drawn from a density pH(hk) and are assumed known at the receiver. For future use we define

the squared magnitudes of the fading coefficients by χk = |hk|2. For a given fading realization

hk, the conditional output probability density is given by

pY |X,H(yk|xk, hk) =
1

π
e−|yk−hk

√
SNR xk|2 . (2)

The channel inputs are modulation symbols drawn from a constellation set X with probabilities

PX(x). We denote the cardinality of the constellation set by M = |X | and by m = log2 M the

number of bits required to index a modulation symbol. We define the constrained capacity CX

(or coded modulation capacity) as the corresponding mutual information between channel input

and output, namely

CX (SNR) = −E

[
log

(∑
x′∈X

PX(x′)e−|H
√

SNR(X−x′)+Z|2+|Z|2
)]

(3)

where the expectation is performed over X, Z and H . If the symbols are used with equal

probabilities, i. e. PX(x) = M−1, we refer to the constrained capacity as uniform capacity, and

denote it by Cu
X .

As we will see later, it proves convenient to consider general constellation sets with arbitrary

first and second moments, respectively denoted by µ1(X ) and µ2(X ), and given by

µ1(X ) , E[X] =
∑
x∈X

xPX(x),

µ2(X ) , E[|X|2] =
∑
x∈X

|x|2PX(x).

Practical constellations have zero mean, i. e. µ1(X ) = 0, and unit energy, that is µ2(X ) = 1.
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In order to transmit at rates close to the coded modulation capacity, multi-level coding or

non-binary codes are needed [4], [5]. Alternatively, in bit-interleaved coded modulation (BICM)

binary codes are mapped with a binary mapping rule γ onto non-binary modulations [1], [2].

Caire et al. found that BICM with natural reflected Gray mapping and low-complexity non-

iterative demodulation attains very good performance, close to that of coded modulation with

equiprobable signalling [2]. For infinite interleaving, the channel is separated into a set of m

parallel independent subchannels, and one defines the so-called BICM capacity, denoted by CX ,γ ,

given by

CX ,γ(SNR) =
m∑

i=1

I(Bi; Y ) (4)

=
m∑

i=1

E

[
log

∑
x′∈X i

b
e−|H

√
SNR(X−x′)+Z|2

1
2

∑
x′∈X e−|H

√
SNR(X−x′)+Z|2

]
(5)

where Bi denotes the binary input random variable corresponding to the i-th parallel channel

(see [2] for details), X i
b are the sets of constellation symbols with bit b in the i-th position of

the binary label and the expectation is performed over all input symbols x in X i
b for b = 0, 1,

and over all possible noise and fading realizations, respectively Z and H . An equivalent, yet

alternative, definition is given by the following.

Proposition 1: The BICM capacity can be expressed as

CX ,γ =
m∑

i=1

1

2

∑
b=0,1

(Cu
X − Cu

X i
b
), (6)

where Cu
X and Cu

X i
b

are, respectively, the constrained capacities for equiprobable signalling in X

and X i
b .

Proof: The proof is given in Appendix A 1.

In general, the sets X i
b have non-zero mean and non-unit average energy. This result reduces the

analysis of the BICM capacity to that of coded modulation over constellation sets with arbitrary

first and second moments.

III. WIDEBAND REGIME

In the wideband regime, as defined by Verdú in [3], the energy of a single bit is spread

over many channel degrees of freedom, resulting in a low signal-to-noise ratio SNR. It is then

1This expression has been independently derived in [6].
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convenient to study the asymptotic behavior of the channel capacity as SNR → 0. In general,

the capacity2 (in nats per channel use) admits an expansion in terms of SNR,

C(SNR) = c1SNR + c2SNR2 + o
(
SNR2

)
, (7)

where c1 and c2 depend on the modulation format, the receiver design, and the fading distribution.

Among the several uses for the coefficients c1 and c2, Verdú [3] studied the transformation of

expansion (7) into a function of the bit-energy to noise ratio Eb

N0
,

Eb

N0

=
SNR

C log2 e
. (8)

In linear scale for Eb

N0
, one obtains

C

(
Eb

N0

)
= ζ0

(
Eb

N0

− Eb

N0 lim

)
+ O

((
∆

Eb

N0

)2
)

(9)

where ∆Eb

N0

∆
= Eb

N0
− Eb

N0 lim
and

ζ0
∆
= − c3

1

c2 log2 2
,

Eb

N0 lim

∆
=

log 2

c1

. (10)

The parameter ζ0 is Verdú’s wideband slope in linear scale [3]. We avoid using the word minimum

for Eb

N0 lim
, since there exist communication schemes with a negative slope ζ0, for which the

absolute minimum value of Eb

N0
is achieved at non-zero rates. In these cases, the expansion at

low power is still given by Eq. (9). The derivation of Eq. (9) can be found in Appendix B.

A second important use of the coefficients c1 and c2 was the analysis of the bandwidth penalty

incurred by using suboptimal constellations in the low-power regime [3]. An implicit assumption

in [3] was the power cannot change together with the bandwidth. In Section IV we relax this

assumption and give a formula for the trade-off between power penalty and bandwidth penalty

and apply it to compare BICM with standard coded modulation.

In the following, we determine the coefficients c1 and c2 in the expansion (7) for generic

constellations, and use them to derive the corresponding results for BICM. Before proceeding

along this line, we note that Theorem 12 of [3] covers the effect of fading. The coefficients c1

and c2 for a general fading distribution are

c1 = E[χ]cAWGN
1 , c2 = E[χ2]cAWGN

2 , (11)

2This capacity may be the coded modulation capacity, or the BICM capacity.
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where the coefficients cAWGN
1 and cAWGN

2 are in absence of fading. Hence, even though we focus

only on the AWGN channel, all results are valid for general fading distributions.

A. Coded Modulation

For the unconstrained case, where the capacity is log(1 + SNR), then c1 = 1 and c2 = −1
2
.

In [7], Prelov and Verdú determined the coefficients c1 and c2 for the so-called proper-complex

constellations introduced by Neeser and Massey [8], which satisfy

µ′2(X ) , E[X2] =
∑
x∈X

x2PX(x) = 0,

where µ′2(X ) is a second-order pseudo-moment, borrowing notation from the paper [8]. The

coefficients for coded modulation formats with arbitrary first and second moments are given by

the following result.

Theorem 1: Consider coded modulation schemes over a signal set X used with probabilities

PX(x) in the Gaussian channel. Then, the first two coefficients of the Taylor expansion of the

constrained capacity CX (SNR) around SNR = 0 are given by

c1 = µ2(X )−
∣∣µ1(X )

∣∣2 (12)

c2 = −1

2

((
µ2(X )−

∣∣µ1(X )|2
)2

+
∣∣µ′2(X )− µ2

1(X )
∣∣2). (13)

When µ1(X ) = 0 (zero mean) and µ2(X ) = 1 (unit energy),

c1 = 1, c2 = −1

2

(
1 +

∣∣µ′2(X )
∣∣2), (14)

and the bit-energy-to-noise ratio at zero SNR is Eb

N0 lim
= log 2.

Proof: See Appendix C.

The formula for c1 is known, and can be found as Theorem 4 of [3]. Also, for proper-complex

constellations c2 = −1
2
, as found in [7]. The second-order coefficient is bounded by −1 ≤ c2 ≤

−1
2
, the maximum (c2 = −1/2) being attained when the constellation has uncorrelated real and

imaginary parts and the energy is equally distributed among the real and imaginary parts.

Applied to some practical signal constellations with equiprobable symbols, Theorem 1 gives

the following corollaries, whose respective proofs are straightforward.

Corollary 1: For uniform M -PSK, c2 = −1 if M = 2 and c2 = −1
2

if M > 2.
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This result extends Theorem 11.1 of [3], where the result held for QPSK, a simple example

of proper-complex constellation.

Corollary 2: When X represents a mixture of N uniform Mn−PSK constellations for n =

1, . . . , N , c2 = −1
2

if and only if Mn > 2 for all rings/sub-constellations n = 1, . . . , N .

This applies to APSK modulations, for instance. In [3] Theorem 11.2 stated the result for mixtures

of QPSK constellations.

B. Bit-Interleaved Coded Modulation

First, for fixed label index, i, and bit value b, let us respectively define the quantities µ1(X i
b ),

µ2(X i
b ), and µ′2(X i

b ), as the mean, the second moment, and the average of the squared symbols

in the set X i
b . Then, we have the following.

Theorem 2: Assume a constellation set X with zero mean and unit average energy. The

coefficients c1 and c2 for the BICM capacity CX ,γ are given by

c1 =
m∑

i=1

1

2

∑
b

|µ1(X i
b )|2, (15)

c2 =
m∑

i=1

1

4

∑
b=0,1

((
µ2(X i

b )− |µ1(X i
b )|2
)2

−
(
1 + |µ′2(X )|2

)
+
∣∣µ′2(X i

b )− µ2
1(X i

b )
∣∣2). (16)

Proof: See Appendix D.

Table I reports the numerical values for the coefficients c1 and c2, as well as the bit signal-to-

noise ratio Eb

N0 lim
and wideband slope ζ0 for various cases, namely QPSK, 8-PSK and 16-QAM

modulations and Gray and Set Partitioning (anti-Gray for QPSK) mappings.

In Fig. 2, the approximation in Eq. (9) is compared with the capacity curves. As expected,

a good match for low rates is observed. We use labels to identify the specific cases: labels 1

and 2 are QPSK, 3 and 4 are 8-PSK and 5 and 6 are 16-QAM. Also depicted is the linear

approximation to the capacity around Eb

N0 lim
, given by Eq. (9). Two cases with Nakagami fading

are also included in Fig. 2, which also show good match with the estimate, taking into account

that E[χ] = 1 and E[χ2] = 1 + 1/ν for Nakagami-ν fading. An exception is 8-PSK with set-

partitioning, for which the approximation is valid for a very small range of rates, since c2 is

positive and very small, which implies a very large slope.

In general, it seems difficult to draw general conclusions for arbitrary mappings from Theo-

rem 2. A notable exception, however, is the analysis under natural reflected Gray mapping.
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TABLE I
Eb
N0 lim

AND WIDEBAND SLOPE COEFFICIENTS c1, c2 FOR BICM IN AWGN.

Modulation and Mapping

QPSK 8-PSK 16-QAM

GR A-GR GR SP GR SP

c1 1.000 0.500 0.854 0.427 0.800 0.500
Eb
N0 lim

0.693 1.386 0.812 1.624 0.866 1.386
Eb
N0 lim

(dB) -1.592 1.419 -0.904 2.106 -0.627 1.419

c2 -0.500 0.250 -0.239 0.005 -0.160 -0.310

ζ0 4.163 -1.041 5.410 -29.966 6.660 0.839

Theorem 3: For M -PAM and M2-QAM and natural, binary-reflected Gray mapping, the

coefficient c1 in the Taylor expansion of the BICM capacity CX ,γ at low SNR is

c1 =
3 ·M2

4(M2 − 1)
, (17)

and the minimum Eb

N0 lim
is

Eb

N0 lim

=
4(M2 − 1)

3 ·M2
log 2. (18)

As M →∞, Eb

N0 lim
approaches 4

3
log 2 ' −0.3424 dB from below.

Proof: The proof can be found in Appendix E.

The results for BPSK, QPSK (2-PAM×2-PAM), and 16-QAM (4-PAM×4-PAM), as presented

in Table I, match with the Theorem.

Somewhat surprisingly, the loss with respect to coded modulation at low SNR is bounded. The

loss represents about 1.25 dB with respect to the classical CM limit, namely Eb

N0 lim
= −1.59 dB.

In the next section, we examine in detail the precise extent to which this loss translates into

an equivalent loss in power. We will do so by allowing for simultaneous variations in power

and bandwidth and conclude that using BICM over a fixed modulation for a large range of

signal-to-noise ratio values, where the transmission rate is adjusted by changing the code rate,

needs not result in a large loss with respect to more optimal schemes, where both the rate and

modulation change. Additionally, this loss can be traded off against a large bandwidth reduction.
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Fig. 2. BICM capacity (in bits per channel use). Labels 1 and 2 are QPSK, 3 and 4 are 8-PSK and 5 and 6 are 16-QAM. Gray

and set partitioning labeling rules correspond to dashed (and odd labels) and dashed-dotted lines (and even labels) respectively.

Dotted lines are cases 1 and 6 with Nakagami-0.3 and Nakagami-1 (Rayleigh) fading (an ‘f’ is appended to the label index).

Solid lines are linear approximation around Eb
N0 lim

.

IV. BANDWIDTH AND POWER TRADE-OFF

In the previous section we computed the first coefficients of the Taylor expansion of the CM

and BICM capacities around SNR = 0. In this section we use these coefficients to determine

the trade-off between power and bandwidth in the low-power regime. We will see how part of

the power loss incurred by BICM can be traded off against a large bandwidth reduction.

The data rate transmitted across a Gaussian channel is determined by two physical variables:

the power P , or energy per unit time, and the bandwidth W , or number of channel uses per unit

time. In this case, the signal-to-noise ratio SNR is given by SNR = P/(N0W ), where N0 is the
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noise spectral density. Then, the capacity measured in bits per unit time is the natural figure of

merit for a communications system. With only a constraint on SNR, this capacity is given by

W log(1 + SNR). For low SNR, we have that

W log

(
1 +

P

N0W

)
=

P

N0

− P 2

2N2
0 W

+ O

(
P 3

N3
0 W 2

)
. (19)

Similarly, for coded modulation systems with capacity CX , we have

CXW = c1
P

N0

+ c2
P 2

N2
0 W

+ O

(
P 5/2

N
5/2
0 W 3/2

)
. (20)

Following Verdú [3], we consider the following scenario. Let two alternative transmission

systems with respective powers Pi and bandwidths Wi, i = 1, 2, achieve respective capacities

per channel use Ci. The corresponding first- and second-order expansion coefficients are denoted

by c11, c21 for the first system, and c12, c22 for the second. A natural comparison is to fix a power

ratio ∆P = P2/P1 and then solve for the corresponding bandwidth ratio ∆W = W2/W1 so that

the data rate is the same, that is C1W1 = C2W2. For instance, option 1 can be QPSK modulation

and option 2 use of a high-order modulation with BICM.

A. An Approximation to the Trade-off

When the capacities C1 and C2 can be evaluated, the exact trade-off curve ∆W (∆P ) can be

computed. For low power, a good approximation is obtained by keeping the first two terms in

the Taylor series. Under this approximation, we have the following result.

Theorem 4: In a neighbourhood of SNR1 = 0 the capacities in bits per second, C1W1 and

C2W2 are equal when the expansion factors ∆P and ∆W are related as

∆W =

(
c22SNR1 + o(SNR1)

)
(∆P )2

c11 + c21SNR1 + o(SNR1)− c12∆P
, (21)

for ∆W as a function of ∆P and, if c12 6= 0,

∆P =
c11

c12

+

(
c21

c12

− c22c
2
11

c3
12∆W

)
SNR1 + o(SNR1), (22)

for ∆P as a function of ∆W .

Proof: The proof can be found in Appendix F.

Remark that we assume SNR1 → 0. As a consequence, replacing the value of ∆P from

Eq. (22) into Eq. (21) gives ∆W = ∆W
(
1 + o(SNR1)

)
, which is not exact, but valid within

the approximation order.
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The previous theorem leads to the following derived results. For simplicity, we drop the terms

o(SNR1) and replace the equality signs by approximate equalities.

Corollary 3: For ∆P = 1, we obtain

∆W ' c22SNR1

c11 + c21SNR1 − c12

, (23)

and for the specific case c11 = c12, ∆W ' c22/c21.

The latter formula has also been obtained by Verdú [3] as a ratio of wideband slopes.

As noticed in [3], the loss in bandwidth may be significant when ∆P = 1. But this point is

just one of a curve relating ∆P and ∆W . For instance, with no bandwidth expansion we have

Corollary 4: For c11 = c12 = 1, and choosing ∆W = 1, ∆P ' 1 +
(
c21 − c22

)
SNR1.

For signal-to-noise ratios below -10 dB, the approximation in Theorem 4 seems to be very

accurate for “reasonable” power or bandwidth expansion ratios. A quantitative definition would

lead to the problem of the extent to which the second order approximation to the capacity is

correct, a question on which we do not dwell further.

Another example concerns the effect of fully-interleaved fading. Let us consider a Nakagami-ν

fading model, such that the squared fading coefficient χk = |hk|2 follows a gamma distribution.

The parameter ν is a real positive number, 0 < ν < ∞. Using the values of the moments

of the gamma distribution, E[χ] = 1, and E[χ2] = 1 + 1/ν, we have that c1 = cAWGN
1 and

c2 =
(
1 + 1

ν

)
cAWGN
2 . Therefore

Corollary 5: Consider a modulation set X with average unit energy and used with power P ,

bandwidth W , and signal-to-noise ratio SNR; its capacity in absence of fading is characterized

at low SNR by the coefficients c1 = 1 and c2. When used in the Nakagami-ν channel with power

Pν and bandwidth Wν , if Pν = P , Wν = W
(
1 + 1

ν

)
, and if Wν = W , Pν = P

(
1− c2

ν
SNR

)
.

As expected, for unfaded AWGN, when ν → ∞, there is no loss. Rayleigh fading (ν = 1)

incurs in a bandwidth expansion of a factor 2 if the power is to be fixed. On the other hand, if

bandwidth is kept unchanged, there is a power penalty in dB of about 10 log10(1 − c2SNR) '

−10c2SNR/ log 10 ' −4.343c2SNR dB, a negligible amount to all practical effects since SNR →

0. The worst possible fading is ν → 0, which requires an unbounded bandwidth expansion or

an unlimited power penalty.
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B. Trade-off for BICM

The trade-off between power and bandwidth can also be applied to determine the expansion

factors when BICM with a non-binary modulation is used rather than, say, QPSK modulation.

Fig. 3 shows the trade-off between power and bandwidth expansion factors when BICM over

16-QAM with Gray mapping is used, having taken QPSK as the reference transmission method.

Results are presented for two values of the signal-to-noise ratio for the QPSK baseline. The exact

result, obtained by using the exact formulas for CX and CX ,γ , respectively Eqs. (3) and (6), is

plotted along the result by using Theorem 4.

As expected, for very low values of SNR, the curve for ∆W diverges as ∆P approaches the

value c11
c12

= 1
0.8

, or 0.97 dB. This is in line with the fact that the minimum energy per bit required

for 16-QAM/BICM is -0.63 dB, as given in Table I. Close to this limit, small improvements in

power efficiency are extremely costly in bandwidth resources. On the other hand, this loss may

be accompanied by a significant reduction in bandwidth, which might be of interest in some

applications. For instance, a loss of 2.4 dB from the baseline at -18 dB requires a tiny fraction

of the original bandwidth, about 2%.

Concerning the last point, the results are exclusive to BICM and the same analysis can be

applied to a single transmission method with coefficients c1 and c2, trading off power against

bandwidth. In this case, for a given ∆P we would have

∆W ' c2SNR1(∆P )2

c1(1−∆P ) + c2SNR1

. (24)

Using QPSK (c1 = 1, c2 = −1
2
) and for SNR = −18 dB a loss of 2.4 dB is linked to using only

3% of the original bandwidth. We see that QPSK is slightly more inefficient than BICM/16-

QAM in using the bandwidth, the reason being that it has a lower coefficient c2, −0.5 instead

of −0.16. To any extent, it should not be surprising that communication in the wideband regime

can be inefficient in using the bandwidth, since we are working in a regime where the main

limitation is in power.

For signal-to-noise ratios larger than those reported in the figure, the assumption of low SNR

loses its validity and the results derived from the Taylor expansion are no longer accurate.

V. CONCLUSIONS

In this paper, we have computed the first two derivatives of the constrained capacity at zero

SNR for rather general modulation sets, and used the result to characterize analytically the
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Fig. 3. Trade-off between ∆P and ∆W between QPSK and 16-QAM with Gray mapping. Solid lines correspond to the exact

tradeoff, while dashed lines correspond to the low-SNR tradeoff.

bahaviour of BICM in the low-power regime. For binary reflected Gray mapping, the capacity

loss at low SNR with respect to coded modulation is shown to be bounded by approximately

1.25 dB. This fact may be useful for the design of systems operating at low signal-to-noise ratios.

Moreover, we have determined the trade-off at low SNR between power penalty and bandwidth

expansion between two alternative systems. The trade-off presented here generalizes Verdú’s

analysis of the wideband regime, where the bandwidth expansion for a fixed power was estimated.

We have shown that no bandwidth expansion may be achieved at a negligible (but non-zero)

cost in power. A similar trade-off between power penalty and bandwidth expansion for general

Nakagami-ν fading has been computed, with similar conclusions as in the point above: bandwidth

expansion may be large at no power cost, but absent at a tiny power penalty. We have applied
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the trade-off to a comparison between QPSK and 16-QAM.

APPENDIX A

PROOF OF PROPOSITION 1

By definition, the BICM capacity is the sum over i = 1, . . . ,m of the mutual informations

I(Bi; Y ). We rewrite this mutual information as

I(Bi; Y ) =
1

2

∑
b∈{0,1}

E

[
log

∑
x′∈X i

b
pY |X,H(y|x′, h)

1
2

∑
x′∈X pY |X,H(y|x′, h)

]
(25)

=
1

2

∑
b∈{0,1}

E

[
log

(∑
x′∈X i

b

2
|X |pY |X,H(y|x′, h)

pY |X,H(y|x, h)

pY |X,H(y|x, h)
1
2

∑
x′∈X

2
|X |pY |X,H(y|x′, h)

)]
, (26)

where we have modified the variable in the logarithm by including a factor 2
|X |pY |X,H(y|x, h) in

both numerator and denominator. Splitting the logarithm,

I(Bi; Y ) =
1

2

∑
b∈{0,1}

E

[
log

∑
x′∈X i

b

2
|X |pY |X,H(y|x′, h)

pY |X,H(y|x, h)

]

+
1

2

∑
b∈{0,1}

E

[
log

pY |X,H(y|x, h)
1
|X |
∑

x′∈X pY |X,H(y|x′, h)

]
. (27)

For fixed b, the quantity

−E

[
log

∑
x′∈X i

b

2
|X |pY |X,H(y|x′, h)

pY |X,H(y|x, h)

]
(28)

is the mutual information achievable by using equiprobable signalling in the set X i
b , Cu

X i
b
, and,

similarly, the quantity

E

[
log

pY |X,H(y|x, h)
1
|X |
∑

x′∈X pY |X,H(y|x′, h)

]
(29)

is the mutual information achieved by equiprobable signalling in X , Cu
X .

APPENDIX B

LINEAR EXPANSION CAPACITY

We start with (7) and use Lagrange’s inversion formula. The inversion formula transforms a

function

C = f1(SNR) (30)
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into its inverse

SNR = f2(C). (31)

We do an expansion around SNR = 0, which is also C = 0. Applied to our case, the inversion

formula becomes

SNR =
SNR

f1(SNR)

∣∣∣∣
SNR→0

C +
1

2

d

dSNR

(
SNR

f1(SNR)

)2∣∣∣∣
SNR→0

C2 + O(C3). (32)

Using the expansion in (7), after some simplifications we get

SNR =
log 2

c1

C− c2 log2 2

c3
1

C2 + O(C3). (33)

Letting SNR = C Eb

N0
and rearranging we obtain

Eb

N0

=
log 2

c1

− c2 log2 2

c3
1

C + O(C2), (34)

which leads to

C = − log2 2c2

c3
1

(
Eb

N0

− log 2

c1

)
+ O

((
Eb

N0

− log 2

c1

)2
)

,

and hence the desired result.

APPENDIX C

CM CAPACITY EXPANSION AT LOW SNR

The assumption that the constellation moments are finite implies that E
[
|X|2+α

]
< ∞ for

α > 0. Therefore, as SNR → 0, for µ > 0 the technical condition

SNR2+α E
[
|X|2+α

]
≤ (− log

√
SNR)µ, (35)

necessary to apply Theorem 5 of [7] holds.

Let us define a 2× 1 vector x(r) = (xr xi)
T , with components the real and imaginary parts of

symbol x, respectively denoted by xr and xi. The covariance matrix of x(r), denoted by cov(X),

is given by

cov(X) =

 E[(Xr − x̂r)
2] E

[
(Xr − x̂r)(Xi − x̂i)

]
E
[
(Xr − x̂r)(Xi − x̂i)

]
E[(Xi − x̂i)

2]

 , (36)

where x̂r and x̂i are the mean values of the real and imaginary parts of the constellation.
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Theorem 5 of [7] gives c1 = Tr(cov(X)) and c2 = −Tr(cov2(X)), or

c1 = E[(Xr − x̂r)
2] + E[(Xi − x̂i)

2] (37)

c2 = −
(
E2[(Xr − x̂r)

2] + E2[(Xi − x̂i)
2] + 2 E2

[
(Xr − x̂r)(Xi − x̂i)

])
. (38)

The coefficient c1 coincides with that in Eq. (12).

As for c2, let us add a subtract a term E[(Xr − x̂r)
2] E[(Xi − x̂i)

2] to Eq. (38). Then,

c2 = −
(

1
2
E2[(Xr − x̂r)

2] + 1
2
E2[(Xi − x̂i)

2] + E[(Xr − x̂r)
2] E[(Xi − x̂i)

2]

+ 1
2
E2[(Xr − x̂r)

2] + 1
2
E2[(Xi − x̂i)

2]

− E[(Xr − x̂r)
2] E[(Xi − x̂i)

2] + 2 E2
[
(Xr − x̂r)(Xi − x̂i)

])
, (39)

which in turn can be written as

c2 = −1

2

(
E2
[
|X − x̂|2

]
+
∣∣E[(X − x̂)2]

∣∣2), (40)

a form which coincides with Eq. (13), by noting that

E
[
|X − x̂|2

]
= E

[
|X|2

]
− |x̂|2 = µ2(X )−

∣∣µ1(X )
∣∣2 (41)

E[(X − x̂)2] = E[X2]− x̂2 = µ′2(X )− µ2
1(X ). (42)

APPENDIX D

PROOF OF THEOREM 2

In Eq. (6) for the BICM capacity, the summands CX and CX i
b

admit each a Taylor expansion

given in Theorem 1. Hence,

c1 =
m∑

i=1

1

2

∑
b=0,1

(
1−

(
µ2(X i

b )− |µ1(X i
b )|2
))

(43)

=
m∑

i=1

((
1− 1

2

∑
b=0,1

µ2(X i
b )

)
+

1

2

∑
b=0,1

|µ1(X i
b )|2
)

(44)

=
m∑

i=1

((∑
s∈X

1

|X |
|s|2 −

∑
s∈X

1

|X |
|s|2
)

+
1

2

∑
b=0,1

∑
s∈X i

b

2

|X |
|µ1(X i

b )|2
)

(45)

=
m∑

i=1

1

2

∑
b=0,1

|µ1(X i
b )|2, (46)

since 1
2

∑
b=0,1 µ2(X i

b ) = µ2(X ) = 1 by construction.

As for c2, it follows from a similar application of Theorem 1.
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APPENDIX E

FIRST-ORDER COEFFICIENT FOR BICM WITH GRAY MAPPING

For M -PAM, the Gray mapping construction makes µ1(X i
b ) = 0, for b = 0, 1 and all bit

positions except one, which we take with no loss of generality to be i = 1. Therefore,

c1 =
1

2

∣∣µ1(X 0
1 )
∣∣2 +

1

2

∣∣µ1(X 1
1 )
∣∣2 =

∣∣µ1(X 0
1 )
∣∣2 =

∣∣µ1(X 1
1 )
∣∣2. (47)

The last equalities follow from the symmetry between 0 and 1.

Symbols lie on a line in the complex plane with values ±β
(
1, 3, 5, . . . ,M − 1), with β a

normalization factor β2 = 3/(M2 − 1). This factor follows by setting 2n = M in the formula
1
n

∑n
i=1(2i−1)2 = 1

3
((2n)2−1), The average symbol has modulus |µ1(X 0

1 )| = β M
2

, and therefore

c1 =
∣∣µ1(X 0

1 )
∣∣2 =

3 ·M2

4(M2 − 1)
. (48)

Extension to M2-QAM is clear, by taking the Cartesian product along real and imaginary

parts. Now, two indices i contribute, each with an identical form to that of PAM. As the energy

along each axis of half that of PAM, the normalization factor β2
QAM also halves and overall c1

does not change.

APPENDIX F

DETERMINATION OF THE POWER AND BANDWIDTH TRADE-OFF

In order to have the same capacities bandwidth and/or power must change to account for the

difference in capacity, so that

c11
P1

N0

+ c21
P 2

1

W1N2
0

+ o(W1SNR2
1) = c12

P2

N0

+ c22
P 2

2

W2N2
0

+ o(W2SNR2
2). (49)

Simplifying common factors, we obtain

c11 + c21SNR1 + o(SNR1) = c12
P2

P1

+
(
c22 + o(SNR1)

)P 2
2

P 2
1

W1

W2

SNR1. (50)

Or, with the definitions ∆P = P2/P1, and ∆W = W2/W1,

c11 + c21SNR1 + o(SNR1) = c12∆P +
(
c22SNR1 + o(SNR1)

)(∆P )2

∆W
, (51)

and

∆W =

(
c22SNR1 + o(SNR1)

)
(∆P )2

c11 + c21SNR1 + o(SNR1)− c12∆P
. (52)
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This equation gives the trade-off between ∆P and ∆W , for a fixed (small) SNR1, so that the

capacities of scenarios 1 and 2 coincide.

Next we solve for the inverse, i. e. for ∆P as a function of ∆P . First, let us define the

quantities a = c22SNR1 + o(SNR1) and b = c11 + c21SNR1 + o(SNR1). Then, rearranging

Eq. (52) we have a(∆P )2 + c12∆W∆P − b∆W = 0 and therefore

∆P =
−c12∆W ±

√
(c12∆W )2 + 4ab∆W

2a
(53)

=
c12∆W

2a

(
−1±

√
1 +

4ab

c2
12∆W

)
. (54)

Often we have c22 < 0, and then the negative root is a spurious solution. We choose then

the positive root. Since ab is of order SNR1, we can use the Taylor expansion (1 + 4t)1/2 =

1 + 2t− 2t2 + o(t2), to write

∆P =
c12∆W

2a

(
2ab

c2
12∆W

− 2a2b2

c4
12(∆W )2

)
(55)

=
b

c12

− ab2

c3
12∆W

. (56)

Since SNR1 → 0, we group the non-linear terms in SNR1 and so get

∆P =
c11 + c21SNR1

c12

− c22c
2
11SNR1

c3
12∆W

+ o(SNR1) (57)

=
c11

c12

+

(
c21

c12

− c22c
2
11

c3
12∆W

)
SNR1 + o(SNR1). (58)
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